Low-Rank Multi-View Learning in Matrix Completion for Multi-Label Image Classification

نویسندگان

  • Meng Liu
  • Yong Luo
  • Dacheng Tao
  • Chao Xu
  • Yonggang Wen
چکیده

Multi-label image classification is of significant interest due to its major role in real-world web image analysis applications such as large-scale image retrieval and browsing. Recently, matrix completion (MC) has been developed to deal with multi-label classification tasks. MC has distinct advantages, such as robustness to missing entries in the feature and label spaces and a natural ability to handle multi-label problems. However, current MC-based multi-label image classification methods only consider data represented by a singleview feature, therefore, do not precisely characterize images that contain several semantic concepts. An intuitive way to utilize multiple features taken from different views is to concatenate the different features into a long vector; however, this concatenation is prone to over-fitting and leads to high time complexity in MC-based image classification. Therefore, we present a novel multi-view learning model for MCbased image classification, called low-rank multi-view matrix completion (lrMMC), which first seeks a low-dimensional common representation of all views by utilizing the proposed low-rank multi-view learning (lrMVL) algorithm. In lrMVL, the common subspace is constrained to be low rank so that it is suitable for MC. In addition, combination weights are learned to explore complementarity between different views. An efficient solver based on fixed-point continuation (FPC) is developed for optimization, and the learned low-rank representation is then incorporated into MC-based image classification. Extensive experimentation on the challenging PASCAL VOC’ 07 dataset demonstrates the superiority of lrMMC compared to other multi-label image classification approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Speedup Matrix Completion with Side Information: Application to Multi-Label Learning

In standard matrix completion theory, it is required to have at least O(n ln n) observed entries to perfectly recover a low-rank matrix M of size n × n, leading to a large number of observations when n is large. In many real tasks, side information in addition to the observed entries is often available. In this work, we develop a novel theory of matrix completion that explicitly explore the sid...

متن کامل

Multi-view Weak-label Learning based on Matrix Completion∗

Weak-label learning is an important branch of multi-label learning; it deals with samples annotated with incomplete (weak) labels. Previous work on weak-label learning mainly considers data represented by a single view. An intuitive way to leverage multiple features obtained from different views is to concatenate the features into a single vector. However, this process is not only prone to over...

متن کامل

Distant Supervision for Relation Extraction with Matrix Completion

The essence of distantly supervised relation extraction is that it is an incomplete multi-label classification problem with sparse and noisy features. To tackle the sparsity and noise challenges, we propose solving the classification problem using matrix completion on factorized matrix of minimized rank. We formulate relation classification as completing the unknown labels of testing items (ent...

متن کامل

Errata: Distant Supervision for Relation Extraction with Matrix Completion

The essence of distantly supervised relation extraction is that it is an incomplete multi-label classification problem with sparse and noisy features. To tackle the sparsity and noise challenges, we propose solving the classification problem using matrix completion on factorized matrix of minimized rank. We formulate relation classification as completing the unknown labels of testing items (ent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015